Futures *MPP Visualization*

Roger A. Crawfis
Lawrence Livermore National Laboratory

DOE Graphics Forum Aspen Lodge, CO April 25-27, 1994

Possible Paths / Strategies

Three Scenarios

- Parallel rendering
- Remote graphics / servers
- Video servers

Parallel Graphics

Issues

- + no need to move data off machine
- have to keep data on machine
- + Fast rendering?
- Not cost effective?
- little interactivity (time sharing)
- + a lot of research in area
- little truly useful research
- little access to millions of \$\$\$ worth of software
- no standards

Remote Graphics (Server concept) Issues

- + lots of current software
- need to move data off machine
- + cost effective hardware?
- + interactive single user
- data too large for interactivity
- + high-end visualization machines exist
- graphics servers are single user and console based
- + work progressing on distributed graphics

Remote Graphics (many workstations) Issues

- + readily available
- -toys
- + lots of current software
- need to move data off machine
- + mix 'n match between high-end / low-end

Video Servers

Issues

- + current market / driving force
- + immediate utility
- need 12Kx12K panable zoomable movies
- limited pick-n-query

Bogus Observations

If you believe any of this its your fault

- Parallel graphics will take a lot of work too much work
- Time-sharing will always kill the interactivity
- No decent graphics server exists or will exist
- Physicists want / need pick-n-query
- An Amiga won't help
- Too much data to do <u>anything</u> <u>anywhere</u> at <u>any time</u>.

Critical Paths (Parallel Graphics)

Standards

- Embedded parallel z-buffering (or something better) within PHIGS, PEX and/or OpenGL
- Global memory based frame buffer => contention
- Distributed frame buffer => message passing
- "Pixel Planes" architecture type algorithms
- Workable user interface / interactions

Critical Paths (Remote Graphics)

Data Compression

- Are billions of zones needed for the physics, or the analysis?
- Compress data intelligently by a factor of 1000 lossy
- Include heirarchical information to allowing interactive browsing and adaptive refinement.
- Include structured information to easily select regions

Critical Paths (Visualization Server)

Render to Pixmap or Video Stream

- Departmental class machine accessible from any office
- Need architecture that allows a path through the graphics hardware and then out to the network.
- Video network protocols Xlib like

Multi-user Based

- Time slicing ala IBM
- Multiple frame buffers

Critical Paths (Video Servers)

Algorithms

- View independence ala Virtual Museum
- Quantifiable (revertable) color mappings
- Multi-variable imagery with comprehension
- Panning and zooming very large compressed movies - also a hardware problem
- Intelligent algorithms to follow interesting areas color mappings, slice planes, contours, etc.
- Dual viewing / movie building Mac in office, and video projector down the hall.

Conclusions

Help!!!